PowerInfer源码解析(三):算子实现
这次我们来解析一下PowerInfer主要所使用到的算子是如何实现的。
相关
ggml_compute_forward_mul_mat
我们先来看原本矩阵乘所默认使用算子(CPU版本)ggml_compute_forward_mul_mat
。
static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
// broadcast src0 into src1 across 2nd,3rd dimension
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) {
float * const wdata = params->wdata;
ggml_to_float_t const to_float = type_traits[type].to_float;
size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
to_float((const char *) x + i01*nb01, wdata + id, ne00);
id += ne00;
}
assert(id*sizeof(float) <= params->wsize);
x = wdata;
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
}
#endif
if (params->type == GGML_TASK_INIT) {
if (src1->type != vec_dot_type) {
char * wdata = params->wdata;
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = ne11*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
//printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
// threads with no work simply yield (not sure if it helps)
if (ir010 >= ir011 || ir110 >= ir111) {
sched_yield();
return;
}
assert(ne12 % ne02 == 0);
assert(ne13 % ne03 == 0);
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
// attempt to reduce false-sharing (does not seem to make a difference)
float tmp[16];
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t i13 = (ir1/(ne12*ne11));
const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
// broadcast src0 into src1
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const int64_t i1 = i11;
const int64_t i2 = i12;
const int64_t i3 = i13;
const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
: (i11*nb11 + i12*nb12 + i13*nb13));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
}
}
}
这一开头就来个GGML_TENSOR_BINARY_OP_LOCALS
是什么东西?ne0
,ne01
等等这些变量又是哪里来的?一开始看到这里一定一头雾水。
我们追根溯源,看看宏定义到底做了什么。
// in ggml.h
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
const type prefix##0 = (pointer)->array[0]; \
GGML_UNUSED(prefix##0);
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
const type prefix##1 = (pointer)->array[1]; \
GGML_UNUSED(prefix##1);
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
const type prefix##2 = (pointer)->array[2]; \
GGML_UNUSED(prefix##2);
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
const type prefix##3 = (pointer)->array[3]; \
GGML_UNUSED(prefix##3);
// in ggml.c
#define GGML_TENSOR_BINARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
原来,这里是负责定义了一堆局部变量。
GGML_TENSOR_LOCALS_1(type, prefix, pointer, array)
负责定义prefix##0
局部变量来存储(pointer)->array[0]
的值。
注意这里的##
的作用是将两个标记拼接成一个新的标记。在宏定义中,这个特性可以用来动态生成标识符,以简化代码和提高代码的灵活性。prefix##0
使用了##
,其目的是将 prefix
和 0
拼接成一个新的标记。假设prefix
是ne
,那么prefix##0
就会变成ne0
,这是一个合法的标识符。函数里面所使用的那些新的局部变量(的变量名)就是这么来的。
从GGML_TENSOR_LOCALS
调用到GGML_TENSOR_LOCALS_3
再到GGML_TENSOR_LOCALS_2
再到GGML_TENSOR_LOCALS_1
,prefix##0
到prefix##3
依次被(pointer)->array[0]
到(pointer)->array[3]
赋值初始化。
GGML_TENSOR_BINARY_OP_LOCALS
则针对src0
,src1
和dst
的ne
和nb
分别使用了GGML_TENSOR_LOCALS
,就有了我们在函数中看到的那一堆局部变量了。
之后,检查是否可以使用 OpenCL 加速(CLBLAST)或 BLAS 库(OpenBLAS/Accelerate)。如果可以,则调用相应的矩阵乘法函数加速计算。
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
// broadcast src0 into src1 across 2nd,3rd dimension
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) {
float * const wdata = params->wdata;
ggml_to_float_t const to_float = type_traits[type].to_float;
size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
to_float((const char *) x + i01*nb01, wdata + id, ne00);
id += ne00;
}
assert(id*sizeof(float) <= params->wsize);
x = wdata;
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
}
#endif
- GGML_TASK_INIT:初始化阶段,用来将 src1 中的 float 类型数据转换为适合进行矩阵乘法的类型(vec_dot_type),并将其存储在一个临时缓冲区 wdata 中,以便之后的计算使用。
- GGML_TASK_FINALIZE:结束阶段,什么也不做,只是标记计算结束。
if (params->type == GGML_TASK_INIT) {
if (src1->type != vec_dot_type) {
char * wdata = params->wdata;
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
return;
}
后面这部分代码主要是任务的分配。
(nth0
和nth1
)先是看一下src0
和src1
谁的行数多(nr0
和nr1
),谁多就按谁来并行。
(ith0
和ith1
)然后,计算当前线程应该处理src0
和src
的哪部分。
我们可以这样理解这个公式:假设nth
是4,
- 如果
nth0
是4,那么ith0
就是[0, 3]
也就是处理四个不同的部分,ith1
则只能是0 - 如果
nth0
是1,那么ith0
只能是0,而ith1
可以是[0, 3]
。
(dr0
和dr1
)然后,计算每个线程应该分别处理多少行src0
和src1
。这里就是用总行数对nth0
和nth1
做商的向上取整。
(ir010
和ir011
)有了负责的部分(ith0
)以及每个部分的行数dr0
,我们就可以计算线程对src0
的处理范围了,即处理src0
的起始行(dr0*ith0
)和终止行(MIN(ir010 + dr0, nr0)
)。
(ir110
和ir111
)同上,线程处理 src1
的起始行和结束行。
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = ne11*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
接下来是计算。首先是一个矩阵的分块。外两层循环每次加blck_0
和blck_1
,然后内两层循环处理该block内的数据。其中第三层循环增加src1
的一列,第四层循环增加src0
的一行。第四层循环算完会得到结果的一列(通过src1
的一列和block内src0
的所有行),再把结果memcpy
到dst_col
。
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
// attempt to reduce false-sharing (does not seem to make a difference)
float tmp[16];
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
// -- snip --
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
}
}
第三层循环内的开头是一个一维索引到三维索引的重新计算。我们可以这样理解这个公式:
- ir1在三维张量中首先跨过了多少“深度”(
ne12 * ne11
表示一个完整的平面大小)。所以这步是在第 2 维度上跨过多少个完整的ne11 x ne12
大小的平面。 - 在确定
i13
之后,减去i13对应的展平索引所跨过的部分,剩下的就是在ne11 * ne12
这个平面中的位置。接下来,用这个剩余部分除以ne11
,得到i12
,即在第 1 维度上的索引。 - 最后,减去
i13
和i12
跨过的部分,剩下的就是在第 0 维度上的索引i11
。它表示当前ir1
在这个平面中,具体的第 0 维度上的位置。
const int64_t i13 = (ir1/(ne12*ne11));
const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
通过 r2 和 r3 将 src0 的较小维度广播到 src1,以适应后者较大的维度。具体地说,i03 和 i02 通过除以广播因子将 src1 的索引转换为 src0 的索引,以正确地在较大的张量上应用较小张量的值。
例如,如果 i13 = 4,r3 = 3,则 i03 = 4 / 3 = 1,表示 src0 的第 3 维的第 1 个元素会被应用于 src1 的第 4 个位置。
// broadcast src0 into src1
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
针对 src1 的多维索引(例如 i11, i12, i13)直接映射到 dst 中的对应维度位置。这表明在 dst 中的元素将与 src1 的这些维度一一对应。
const int64_t i1 = i11;
const int64_t i2 = i12;
const int64_t i3 = i13;
计算src0
的行起始位置(block中的第一行)。
const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
计算src1_col
和dst_col
的位置。这里如果src1
是连续的则使用ne
和row_size
来计算,否则使用nb
来计算(为什么?)。
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
: (i11*nb11 + i12*nb12 + i13*nb13));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
最后,算出结果中的一列。这里依次把block里面src0
的各行与src1
的对应列做向量点乘,把结果放到tmp
中,再把tmp
的结果放到dst_col
即对应列中。
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
这样一来,ggml.c
中的ggml_compute_forward_mul_mat
就结束了。
ggml_cuda_mul_mat
对于GGML_USE_CUBLAS
为True
的情况,GGML_OP_MUL_MAT
会调用到ggml_cuda_mul_mat
。
ggml_cuda_mul_mat
会通过检查输入张量的类型、内存布局、计算能力等条件,来选择最适合的矩阵乘法计算方法。
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device =
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
(src1->backend == GGML_BACKEND_GPU) &&
( dst->backend == GGML_BACKEND_GPU);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
int64_t min_compute_capability = INT_MAX;
for (int64_t id = 0; id < g_device_count; ++id) {
if (min_compute_capability > g_compute_capabilities[id] && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
min_compute_capability = g_compute_capabilities[id];
}
}
#ifdef CUDA_USE_TENSOR_CORES
const bool use_tensor_cores = true;
#else
const bool use_tensor_cores = false;
#endif
// debug helpers
//printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
//printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
//printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
//printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
} else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
// KQ + KQV multi-batch
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
#ifdef GGML_CUDA_FORCE_DMMV
const bool use_mul_mat_vec_q = false;
#else
const bool use_mul_mat_vec_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);
#endif // GGML_CUDA_FORCE_DMMV
if (use_mul_mat_vec_q) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
} else {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
}
} else {
bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);
// when tensor cores are available, use them for large batch size
// ref: https://github.com/ggerganov/llama.cpp/pull/3776
if (use_tensor_cores && min_compute_capability >= CC_VOLTA && src1->ne[1] > MMQ_MAX_BATCH_SIZE) {
use_mul_mat_q = false;
}
if (use_mul_mat_q) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
} else {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
}
}
} else {
GGML_ASSERT(false);
}
}
对于src0
是量化类型,且src1
是列向量的情况,代码会根据GPU计算能力选择是直接使用量化的矩阵乘法(ggml_cuda_op_mul_mat_vec_q
),还是先进行反量化(ggml_cuda_op_dequantize_mul_mat_vec
)。
if (use_mul_mat_vec_q) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
} else {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
}
ggml_cuda_op_mul_mat
的函数签名如下。注意这里最后一个参数covert_src1_to_q8_1
如果为true
,则会尝试调用quantize_q8_1
对输入src1
进行量化。
static void ggml_cuda_op_mul_mat(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
const bool convert_src1_to_q8_1)
ggml_cuda_op_dequantize_mul_mat_vec
ggml_cuda_op_dequantize_mul_mat_vec
基于量化类型选择合适的函数。
inline void ggml_cuda_op_dequantize_mul_mat_vec(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, const cudaStream_t & stream) {
const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low;
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
#ifdef GGML_CUDA_F16
size_t ash;
dfloat * src1_dfloat = nullptr; // dfloat == half
bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
if (src1_convert_f16) {
src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
ggml_cpy_f32_f16_cuda((const char *) src1_ddf_i, (char *) src1_dfloat, ne00,
ne00, 1, sizeof(float), 0, 0,
ne00, 1, sizeof(half), 0, 0, stream);
}
#else
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
#endif // GGML_CUDA_F16
switch (src0->type) {
case GGML_TYPE_Q4_0:
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_1:
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_0:
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_1:
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q8_0:
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q2_K:
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q3_K:
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_K:
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_K:
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q6_K:
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_F16:
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
default:
GGML_ASSERT(false);
break;
}
#ifdef GGML_CUDA_F16
if (src1_convert_f16) {
ggml_cuda_pool_free(src1_dfloat, ash);
}
#endif // GGML_CUDA_F16
(void) src1;
(void) dst;
(void) src1_ddq_i;
(void) src1_ncols;
(void) src1_padded_row_size;
}
事实上,这些函数都会调用到dequantize_mul_mat_vec
,只是选择了不同的函数模版。
以GGML_TYPE_Q4_0
为例,调用的是dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
。
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
其中的dequantize_q4_0
是GGML_TYPE_Q4_0
类型的反量化函数。
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q4_0 * x = (const block_q4_0 *) vx;
const dfloat d = x[ib].d;
const int vui = x[ib].qs[iqs];
v.x = vui & 0xF;
v.y = vui >> 4;
#ifdef GGML_CUDA_F16
v = __hsub2(v, {8.0f, 8.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 8.0f) * d;
v.y = (v.y - 8.0f) * d;
#endif // GGML_CUDA_F16
}
在最终调用到的dequantize_mul_mat_vec
中,blockIdx.x*blockDim.y + threadIdx.y
用于指定负责的row
,threadIdx.x
作为tid
用于计算所负责的col
。以iter_stride
为步长,每次迭代处理vals_per_iter
个数据,同时单个迭代中又每次处理两个数据(j += 2
)。
处理时,先对vx
做反量化,结果放置到v
,然后再用v
和y
做相乘,结果累加到tmp
中。
接着,根据划分const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
,我们知道threadIdx.x
的范围其实就是0~31,因此可以做一个warp shuffle(tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
)把结果累加,最后tid == 0
的线程负责把结果放置到dst[row]
中。
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
// qk = quantized weights per x block
// qr = number of quantized weights per data value in x block
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows) {
return;
}
const int tid = threadIdx.x;
const int iter_stride = 2*GGML_CUDA_DMMV_X;
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
const int y_offset = qr == 1 ? 1 : qk/2;
// partial sum for each thread
#ifdef GGML_CUDA_F16
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
float tmp = 0.0f;
#endif // GGML_CUDA_F16
for (int i = 0; i < ncols; i += iter_stride) {
const int col = i + vals_per_iter*tid;
const int ib = (row*ncols + col)/qk; // x block index
const int iqs = (col%qk)/qr; // x quant index
const int iybs = col - col%qk; // y block start index
// processing >2 values per i iter is faster for fast GPUs
#pragma unroll
for (int j = 0; j < vals_per_iter; j += 2) {
// process 2 vals per j iter
// dequantize
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
dfloat2 v;
dequantize_kernel(vx, ib, iqs + j/qr, v);
// matrix multiplication
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
#ifdef GGML_CUDA_F16
tmp += __hmul2(v, {
y[iybs + iqs + j/qr + 0],
y[iybs + iqs + j/qr + y_offset]
});
#else
tmp += v.x * y[iybs + iqs + j/qr + 0];
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
#endif // GGML_CUDA_F16
}
}
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
if (tid == 0) {
#ifdef GGML_CUDA_F16
dst[row] = tmp.x + tmp.y;
#else
dst[row] = tmp;
#endif // GGML_CUDA_F16
}
}
ggml_cuda_mul_mat_sparse 有什么不同
sparse这边,反量化版本调用的是ggml_cuda_op_mul_mat_vec_sparse_dequantized
。
static void ggml_cuda_mul_mat_sparse(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(dst->src[2] != NULL && "dst->src[2] must be present for sparse matrix multiplication");
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
switch(src0->type) {
case GGML_TYPE_F16:
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_sparse_dequantized, false);
break;
case GGML_TYPE_Q4_0:
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_sparse_q, true);
break;
default:
GGML_ASSERT(false && "unsupported type for sparse matrix multiplication");
}
} else {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_batch_sparse, false);
}
}
ggml_cuda_op_mul_mat_vec_sparse_dequantized
里面,我们注意到这里从dst->src
里取了sparse_idx
和row_lookup
这么两个东西。
inline void ggml_cuda_op_mul_mat_vec_sparse_dequantized(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, const cudaStream_t & stream) {
const int64_t ne00 = src0->ne[0];
const int64_t ne10 = src1->ne[1];
const int64_t row_diff = row_high - row_low;
float * sparse_idx = static_cast<float *>(ggml_cuda_get_tensor_data(dst->src[2]));
int32_t * row_lookup = dst->src[3] != NULL ? static_cast<int32_t *>(ggml_cuda_get_tensor_data(dst->src[3])) : NULL;
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
#ifdef GGML_CUDA_F16
size_t ash;
dfloat * src1_dfloat = nullptr; // dfloat == half
bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
if (src1_convert_f16) {
src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
ggml_cpy_f32_f16_cuda((const char *) src1_ddf_i, (char *) src1_dfloat, ne00,
ne00, 1, sizeof(float), 0, 0,
ne00, 1, sizeof(half), 0, 0, stream);
}
#else
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
#endif // GGML_CUDA_F16
cudaMemsetAsync((void *)dst_dd_i, 0, ggml_nbytes(dst), stream);
switch (src0->type) {
case GGML_TYPE_F16:
convert_mul_mat_vec_f16_cuda_sparse(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream, row_lookup, sparse_idx);
break;
default:
GGML_ASSERT(false && "Unsupported type");
break;
}
(void) src1;
(void) dst;
(void) src1_ddf_i;
(void) src1_ncols;
(void) src1_padded_row_size;
}
而实际上,这里的row_lookup
就是gpu_bucket
,记录的是有哪些neurons在GPU上,即这些neurons在原矩阵中的index。而sparse_idx
则是运行时通过predictor预测会被激活的neurons的index。
struct ggml_tensor * ggml_mul_mat_idx_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * sparse_idx,
struct ggml_tensor * gpu_bucket,
int64_t result_ne0) {
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
const int64_t ne[4] = { result_ne0, b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
result->op = GGML_OP_MUL_MAT_SPARSE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = sparse_idx;
result->src[3] = gpu_bucket;
return result;
}
然后,row_lookup
和sparse_idx
会被作为多出来的两个参数lst
和idx
传递到dequantize_mul_mat_vec_sparse
。
static void convert_mul_mat_vec_f16_cuda_sparse(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream, int *lst, float *idx) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec_sparse<1, 1, convert_f16>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows, lst, idx);
}
到了kernel这边,其实改动就很简单了。
先使用gpu_row
去lst
(也就是row_lookup
或者说gpu_bucket
)查询一下其对应的是原矩阵的哪个neuron
也就是哪一行row
,然后再去idx
(也就是通过predictor得到的sparse_idx
)看一下其预测值有没有达到dex_sparse_threshold
阈值。若没有,则直接return
也就是跳过其计算。
就是这么简单,其他部分没有多大修改。
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec_sparse(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows, int * lst, float * idx) {
// qk = quantized weights per x block
// qr = number of quantized weights per data value in x block
const int gpu_row = blockIdx.y*blockDim.y + threadIdx.y;
if (gpu_row >= nrows) {
return;
}
int row = lst ? lst[gpu_row] : gpu_row;
if (idx[row] < dev_sparse_threshold) {
return;
}
const int tid = threadIdx.x;
const int iter_stride = 2*GGML_CUDA_DMMV_X;
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
const int y_offset = qr == 1 ? 1 : qk/2;
// partial sum for each thread
#ifdef GGML_CUDA_F16
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
float tmp = 0.0f;
#endif // GGML_CUDA_F16
for (int i = 0; i < ncols; i += iter_stride) {
const int col = i + vals_per_iter*tid;
const int ib = (gpu_row*ncols + col)/qk; // x block index
const int iqs = (col%qk)/qr; // x quant index
const int iybs = col - col%qk; // y block start index
// processing >2 values per i iter is faster for fast GPUs
#pragma unroll
for (int j = 0; j < vals_per_iter; j += 2) {
// process 2 vals per j iter
// dequantize
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
dfloat2 v;
dequantize_kernel(vx, ib, iqs + j/qr, v);
// matrix multiplication
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
#ifdef GGML_CUDA_F16
tmp += __hmul2(v, {
y[iybs + iqs + j/qr + 0],
y[iybs + iqs + j/qr + y_offset]
});
#else
tmp += v.x * y[iybs + iqs + j/qr + 0];
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
#endif // GGML_CUDA_F16
}
}
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
}
if (tid == 0) {
#ifdef GGML_CUDA_F16
dst[row] = tmp.x + tmp.y;
#else
dst[row] = tmp;
#endif // GGML_CUDA_F16
}
}
总结
对于原版的算子,这里介绍的比较简单。我们主要关注PowerInfer在这里做了什么修改。
其实相比原先的实现,PowerInfer这边的sparse
版本所做的修改就很简单。就是检查一下其predictor的预测值有没有达到指定的阈值,若没有则直接return
跳过计算即可。
到这里,从上到下的一个简单运行流程就被走通了,对PowerInfer的源码解析也初步结束了。
可能还有下一篇解析,也可能没有了。
支持 ☕️
如果发现内容有纰漏或错误,可以通过邮箱hangyu.yuan@qq.com联系我或直接在下方评论告诉我,谢谢。
我的GitHub主页。